纳尔逊促销1

简化具有集成电容器的雄鹿调节器EMI设计

2022年5月17日
Sponsored by Texas Instruments: Capacitors placed inside a buck-converter IC’s package coupled with proprietary Dual-Random Spread Spectrum (DRSS) technology can help minimize EMI and save board space.

成员can以PDF格式下载本文。

Buck调节器是以其效率而闻名的多功能组件。但是,将它们部署在必须满足电磁干扰(EMI)要求的产品中,例如ComitéInternationalSpécialDestestturtationsRotoélectriques(CISPR)可能会带来挑战。

驱动监管机构高性能的高开关频率会加剧排放。幸运的是,具有集成电容器的监管机构并采用传谱转换技术,可以轻松地帮助您满足EMI要求。

Sponsored Resources:


集成电容器

图1显示了具有输入电容的简化降压器(C)代表低频和高频电容器。当高频电容器电流环中的高瞬时晶体管(MOSFET)Q1打开时,高瞬态电流(DI/DT)流动时,高频电流电流电流电流环中的高瞬态电流(DI/DT)时。


1.电容器cand CBOOT当高侧MOSFET Q1开关时,会体验高瞬态电流。

限制EMI的关键因素是使此类环的区域保持高DI/DT的高度,同时还将高压电压(DV/DT)节点的表面积最小化。为了帮助这两个因素,您应该将输入电容器尽可能靠近降压器IC找到。

Layout constraints, however, often preclude optimal capacitor placement. To overcome layout limitations, you can use buck regulators such as Texas Instruments’ LMQ66430-Q1 and LMQ61460-Q1, which deliver 3 A at 36 V and 6 A at 36 V, respectively, and are both qualified to the AEC-Q100 quality standard for automotive applications.

Each buck regulator integrates high-frequency input capacitors inside the regulator package. This integration reduces the need for external capacitors and results in the smallest possible input-capacitor current-loop area, thereby minimizing parasitic inductance in the loop and reducing the amount of energy emitted.

此外,两者都提供增强的包装,以最大程度地减少开关节点振铃。例如,LMQ61460-Q1出现在Ti的Hotrod Flip-chip-on-leadFrame软件包中,该软件包没有内部粘结线,从而消除了重要的输入环电感源。

此外,请注意启动电容器(CBOOT) 在图1。它的工作是在Q1打开时向高端门驱动器提供费用。(Q1关闭时,内部电路会刷新该电容器的电荷。)CBOOTestablishes another high-di/dt current loop whose area should be minimized. The TI LMQ66430-Q1 integrates this capacitor inside its package, thus limiting the area of the high-di/dt current loop and associated high-dv/dt voltage node while also reducing the need for external components.

驱动率控制

最大程度地减少质调节器设计中的EMI的一种常见方法是利用SLEW速率控制。例如,使用LMQ61460-Q1,例如外部引导电阻(RBOOT)控制转机期间高方面FET驱动器的强度。R的值100ΩBOOT导致大约2.7-ns开关节点上升时间,这实际上消除了过冲。

Although slew-rate control does reduce emissions, it’s at the expense of lower efficiency.By utilizing a buck regulator with integrated input capacitors, though, you might be able to achieve the desired EMI performance without resorting to slew-rate control,如示例所示图2


2. The plot on the left represents a buck regulator with no integrated capacitors but using maximum slew-rate control, while the plot on the right shows a device having integrated capacitors but no slew-rate control.

左侧的情节图2represents a buck regulator with no integrated capacitors but it uses maximum slew-rate control, while the plot on the right represents a device with integrated capacitors but has no slew-rate control. The device with integrated capacitors achieves a 4- to 5-dBmV improvement in emissions performance compared with the device with maximum slew-rate control. And the superior performance of the device with the integrated capacitors comes with no sacrifice in efficiency.

传谱技术

In addition to minimizing the areas of high-di/dt current loops and high-di/dt voltage nodes, you can take other steps to minimize EMI. A switching device like a buck regulator generates EMI at its switching frequency and at the harmonics of that frequency.

减轻此类EMI的一种方法是使用传谱技术来抖动开关频率。它可以使基本的基本变量融为一体,并将谐波融合到平滑的平均波形中,其值保持在相关的EMI标准设定的限制范围内。

常见的传播实现采用了三角形或伪和伪调制。三角调制在基本频率下效果很好,使您可以降低EMI滤波器的尺寸和成本,但在较高频率下的效果较低。此外,许多三角调制方案在4到15 kHz范围内具有三角波频率。如果耦合到附近的音频电路甚至以相同频率共振的陶瓷电路中耦合,则可以产生听觉音调。

另一方面,伪随机调制可能不会均匀地衰减基本,从而限制了过滤器的尺寸减小。但是,它在高频上保持其性能,并且不会表现出可听见的音调问题。

To get the benefits of both approaches while limiting the drawbacks, you can choose a switching regulator that employsTI的专有双随机传播频谱(DRSS)技术,例如LMQ66430-Q1。DRSS方法始于三角调制(图3,顶部)。然后,它随机划分三角波形的频率(Figure 3, middle)to address the audible tone issue, spreading the tone into white noise.


3.TI的drs技术始于三角模ulation, randomly dithers the triangle frequency, and adds pseudorandom modulation on top of the dithered-triangle modulation.

最后,为了解决三角调制的次优高频性能,Drss在抖动 - 三角形调制的顶部添加了伪和调制(图3,底部)。In addition to spreading the audible tone into white noise, DRSS goes a step further to actively reduce that noise.

Conclusion

High transient currents are major drivers of buck-regulator EMI, and minimizing the areas of high-di/dt current loops and high-dv/dt voltage nodes is critical. Integrating high-frequency capacitors inside the regulators minimizes those areas as much as possible to assist with meeting EMI compliance requirements.

Choosing a device with TI’s proprietary DRSS technology can further reduce unwanted emissions. Finally, buck regulators with integrated capacitors also help cut BOM count and reduce power-supply size.


Sponsored Resources:


Sponsored

汽车三通高端LED驾驶员,带有热共享和板外箱

汽车三通高端LED驾驶员,带有热共享和板外箱

Usb Type-C & Usb Power Delivery Ics – Reference Designs

PMP4451.2 - USB-C DFP+ USB-A Power Bank with Input & Output Fast Charger Reference Design. Personal electronics. 3.9. 14. Non-Isolated. DC. 12. 1.5. 18. Boost…

三相,1.25 kW,200-vac小尺寸gan逆变器参考设计用于集成驱动器

A fully assembled board has been developed for testing and performance validation only, and is not available for sale.. Download ready-to-use system f…

Vishay — VSMA1094600 Infrared Emitter

Vishay Surflight™投资组合包括多个表面上的红外发射器,峰值波长为940 nm或850 nm。
Baidu