与锂基电池相关的危险是设计师所熟知的。制造过程中的任何不一致,充电/放电循环期间的管理不当,或管理不当的热问题会导致火灾甚至爆炸。因此,它没有令人惊讶的是,寻找更安全的方式来构建这些高密度,轻质的电化学能量 - 存储组件引起了显着的关注。
A four-person team at哥伦比亚大学富基工程与应用科学学院developed a technique that may offer a viable approach to a better electrolyte and, by extension, batteries.1,2通过控制固体锂电解质的结构,它们开发了一种更安全,不易燃和无毒的固体电解质,从而避免与液体电解质相关的疑虑。同时,该过程可能导致电池可以更容易地拟合可用的封闭空间 - 以及具有更长生命周期的电池。
1. In ice templating, a thermoelectric plate is used to cool the solution to an icy state. Then, a vacuum is applied that induces sublimation with a direct phase transition to gaseous state, while the desired ceramic electrolyte material remains. (Source: ACS Publications)
电解质的产生基于锂 - 铝 - 磷酸锂锂1+xAL.XTi2-x(PO.4.的)3.纳米颗粒(LATP NPs)处理other chemicals to form a ceramic precipitate. Normally, the high conductivity of ceramic fillers is compromised to a large extent by the low conductivity of the resultant matrix, especially when nanoparticles are used. Here, an ice-templating process is employed(图。1)其中,其中具有陶瓷颗粒的水溶液从底部(从热电板的顶部开始)冷却。冷却速率由LabVIEW程序控制。
接下来,将真空施加到冰上,迫使其直接过渡到气态(升华),同时留下垂直对准的结构;直接没有干预液相,最小化结构的污染。最后,这种陶瓷结构与聚合物组合以提供机械载体和对电解质的柔韧性。聚环氧乙烷(PEO)基质中的垂直对准和连接的LATP NP最大化离子传导,同时保持复合材料的柔韧性。
这种垂直对齐的结构的电导率(图2)达到0.52×10-4S / cm,比随机分散的LATP NPS高出比复合电解质高的3.6倍。与纯PEO电解质相比,复合电解质还显示出改善的热和电化学稳定性。[使用标准电化学阻抗光谱(EIS)技术测量电导率(Siemens / cm)。3.,4]
2. A schematic of the ceramic-based polymer electrolyte and a microphotograph show that the resultant material matrix is straight, which enables faster ion transport and thus increased conductivity. (Source: ACS Publications)
Researchers in earlier studies used either randomly dispersed ceramic particles in polymer electrolyte or fiber-like ceramic electrolytes that were not vertically aligned, and the randomly dispersed ceramic particles in the polymer matrix blocked the ion transport.
“We thought that if we combined the vertically aligned structure of the ceramic electrolyte with the polymer electrolyte, we would be able to provide a fast highway for lithium ions and thus enhance the conductivity,” says PhD student Haowei Zhai, the paper’s lead author. He adds, “We believe this is the first time anyone has used the ice-templating method to make flexible solid electrolyte, which is nonflammable and nontoxic, in lithium batteries.”
此外,该技术原则上可以提高电池的能量密度。通过使用固体电解质,锂电池的负电极,即目前是石墨层,可以由锂金属代替,因此可以将电池的特定能量提高60%至70%。
学生Zhai and Project Lairend袁阳材料科学与工程助理教授,下一步试图优化组合电解质的属性,然后用电池电极组装柔性固体电解质,构建完整锂电池的原型。
References
1. ACS出版物,“具有垂直对准的柔性固体复合电解质,具有用于锂电池的连接离子导电纳米颗粒“
2. ACS Publications, “支持信息:具有垂直对准的柔性固体复合电解质,锂电池垂直对准和连接的离子导电纳米颗粒“
3. Gamry Instruments,“电化学阻抗光谱的基础知识“
康涅狄格大学,“电化学阻抗光谱的基础知识“